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Abstract

In this paper, we present an approach to build models of breast tissue appearance in
mammograms. Mammographic tissue is modelled based on a statistical analysis of lo-
cal appearance. We investigate five strategies by using different types of local features,
covering aspects of intensity, texture, and geometry. A visual dictionary is generated to
summarise local tissue appearance with descriptive “words”. The global appearance of
the breast is represented as an occurrence histogram over the dictionary. The resulting
histogram models can be applied to breast density classification. The validity is qualita-
tively and quantitatively evaluated using the full MIAS database. The consensus of three
experts according to the BIRADS criterion is used as the classification ground truth. We
test the performance of each individual strategy and the combination of all strategies.
The results indicate that our approach has potential for mammographic risk assessment.

1 Introduction
Many studies have indicated that there is a strong correlation between breast tissue den-
sity/patterns and breast cancer risk. Therefore, modelling mammographic tissue appearance
is beneficial for the qualitative perception of breast tissue patterns, quantitative analysis of
breast density, and automated mammographic risk assessment. Recently, a variety of ap-
proaches have been developed to characterise breast tissue in mammograms [4, 7, 8, 12]. In
general, intensity information is used to describe tissue density and texture information is
used to represent tissue patterns. In this paper, we present a statistical approach to model
breast tissue appearance over the whole breast. We focus on local tissue appearance in terms
of intensity, texture, and geometry. Local features are extracted from the neighbourhood of
breast tissue pixels and are statiscally analysed to build overall models of breast tissue.

2 Methodology
The schema of our method is shown in Fig. 1. Firstly, as a preprocessing step, the breast
region is segmented using the approach in [1]. Subsequently, features are extracted from the
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Figure 1: The schema of modelling breast tissue appearance based on the statistical analysis.

local neighbourhood of breast tissue pixels within the breast region. After that, a visual dic-
tionary of local tissue appearance is generated in two ways: one is aggregating an exhaustive
configuration of a certain type of local features; the other is performing an initial training step
to “learn” clusters of local features. Finally, each breast tissue pixel is labelled by searching
for the nearest “word” in the dictionary. Each mammographic image is represented as an
occurrence histogram of the “words” in the dictionary. We investigate five different strate-
gies for local features, including local binary patterns, local greylevel appearences, local
geometric structures, joint filter responses, and raw image patches, respectively.

Local Binary Patterns (LBP) were first proposed in [6]. Local appearance of breast tissue
is encoded into a set of binary values. The greylevel value of the centre pixel is substracted
from the local neighbourhood, and a binary label is assigned to each neighbouring pixel
according to the difference sign. The resulting binary pattern is transformed into a unique
LBP number by LBP= 1+∑P−1

p=0 s(gp−gc)2p, where gc is the greylevel value of the centre
pixel, gp denotes the greylevel value of the pth pixel in the local neighbourhood, and s(x) =
1 if x ≥ 0 else s(x) = 0. Thus, each LBP number corresponds to a unique local binary
pattern, and all possible patterns comprise the visual dictionary of local appearance. An
LBP histogram is populated by counting the occurrences of LBP numbers at every pixel.

The Local Greylevel Appearance (LGA) based approach was presented in [12]. Breast
tissue appearance is modelled by analysing the joint greylevel distribution of the local neigh-
bourhood. The local greylevel appearance is transformed into a unique LGA number by
LGA = 1+∑i, j Ngcounter(i, j)I(i, j), where Ng is the greylevel resolution, counter(i, j) is the
sequence number of pixel (i, j) within the neighbourhood, and I(i, j) is the greylevel value
of pixel (i, j). Thus, each LGA number corresponds to a unique local greylevel appearance,
and all possible greylevel appearances comprise the visual dictionary. An LGA histogram
containing the combination of LGA numbers and corresponding occurrences is generated.

Basic Image Features (BIF) were defined in [2]. A second-order family of six Gaussian
derivative filters are used to analyse local appearance of breast tissue with respect to multi-
scale geometric structures. Mammographic images are convolved with the Gaussian filter
bank at multiple scales. Seven BIFs are defined, each corresponding to a distinct type of lo-
cal geometric structures. For each breast tissue pixel, the corresponding geometric structure
is determined according to the largest BIF computed with its local neighbourhood. The con-
figuration of the seven geometric structures across multiple scales is encoded into a unique
BIF column, and all possible configurations comprise the visual dictionary. Breast tissue
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appearance is modelled by counting the occurrences of BIF columns over the whole breast.
In this paper, we use two types of textons. The first type of textons are generated by filter-

ing a set of training mammograms with a filter bank and clustering the joint filter responses.
The cluster centres are considered as textons. We use the MR8 filter bank defined in [10],
where only eight filter responses are retained. The aggregated filter responses of breast tissue
pixels over all the training mammograms are clustered using the classic K-Means algorithm.
The resulting textons comprise the dictionary of local tissue appearance. Breast tissue ap-
pearance is modelled by a frequency histogram of textons. The second type of textons are
generated by clustering raw image patches extracted from the training mammograms [11].
The procedure of learning textons is similar as described above. A frequency histogram of
textons based on source image patches constructs the appearance model of breast tissue. It
has been demonstrated in [11] that the image-patch based textons can provide superior per-
formance to the filter-response based textons for the sake of texture classification. We refer
to the two modelling strategies based on the MR8 and image-patch textons as Texton I and
Texton II, respectively. Note that the preprocessing step in [10, 11] is not performed in Tex-
ton I and Texton II, and the filter responses in Texton I are not normalised by Weber’s law as
in [10, 11], in order to retain the original intensity correlation between mammograms.

3 Experiments and Results
In our experiments, the Mammographic Image Analysis Society (MIAS) database [9] was
used, which contains 322 Medio-Lateral Oblique (MLO) mammograms taken from 161
women. The original spatial resolution is 50µm×50µm per pixel. Due to memory and effi-
ciency reasons, we downsampled the full resolution to 800µm×800µm per pixel. Three ex-
perts classified 321 available mammograms (mdb295ll was excluded for historical reasons)
into four Breast Imaging Reporting and Data System (BIRADS) density categories [5]. The
consensus between individual classification decisions was considered as the ground truth.
We built appearance models for each mammogram using the five strategies described above.

When modelling breast tissue appearance, to eliminate bias caused by mammogram
edges and the breast-background boundary, we only focused on the pixels with neighbour-
hoods entirely located within the breast region, which can be identified automatically based
on the pre-segmented breast region. For LBP, we used a 3× 3 neighbourhood. For LGA,
we also used a 3×3 neighbourhood and reduced the greylevel resolution to 16. For BIF, we
convolved mammographic images with the Gaussian filter bank at four scales. For the two
texton based methods, at the texton learning stage, we randomly selected 40 mammograms
from the database as the training set. For texton II, we extracted 3× 3 image patches and
rearranged the pixels in row order for the K-means clustering. For each individual method,
we learned 160 textons from the training set. Thus, the number of “words” generated for
each type of local feature was 29, 169, 74, 160 and 160, respectively

For qualitative evaluation, we display the results in the form of label maps. To generate
a label map, at each breast tissue pixel, we searched for the nearest “word” to the extracted
local feature across the dictionary, and labelled each pixel according to the response “word”.
Fig. 2 shows the resulting label maps of example mammograms covering the four BIRADS
categories. For LBP, LGA and BIF, the “words” were sorted according to the order of LBP
number, LGA number and BIF column. For texton I and texton II, the “words” were sorted
according to the magnitude value of textons in ascending order before labelling the pixels.
It is shown that LBP is sensitive to noise and small textures, and there are no homogeneous
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Figure 2: Example mammograms and resulting label maps using different strategies: top
row: original mammograms and LBP; middle row: LGA and BIF; bottom row: Texton I and
Texton II. For each batch, from left to right corresponds to an increasing BIRADS category.

regions obtained within the breast area. Both LGA and Texton II indicate realistic segmen-
tation with respect to tissue density. Texton I has strong responses to the boundary between
dense and fatty tissue regions, and relatively homogeneous regions are obtained within the
dense/fatty tissue. For BIF, cell-like regions are obtained within the breast area, correspond-
ing to different types of geometric structures.

For quantitative evaluation, we applied the resulting models in the form of occurrence
histograms (L1 normalised) to breast density classification. As described in Section 2, the
occurrence histograms were populated by spanning the full dictionary. This could result in
sparse histograms in the real observation of breast tissue. Therefore, we avoided using the
full range of the histograms for the classification. We sorted the histogram bins in descend-
ing order to select the dominant “words” from the dictionary. We chose the most frequently
used “words” occupying 99% occurrences as the dominant “words”. Thus, the histogram
bins corresponding to the “words” never or rarely referenced were removed. In our experi-
ments, it was indicated that the feature space dimensionality was significantly reduced after
compressing the visual dictionary, especially for LBP, LGA, and BIF.

A leave-one-woman-out methodology was used for the evaluation. We applied the multi-
class boosting algorithm for the classification. We chose to use the Gentleboost algorithm [3]
to train a classifier for each strategy, where the weak learners used in each of serial rounds
are decision stumps which are regarded as degenerate decision trees with a single node. The
created classifiers can provide continuous-valued outputs, which are interpreted as posterior
probabilities. For a testing mammogram with a histogram-like model x, the classifier output
corresponding to the class Bj is the probability of x to belong to Bj, denoted by pBj(x). To
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Table 1: Confusion matrices for breast density classification using different strategies.
LBP

BIRADS I II III IV CA
Tr
ut
h

I 72 13 2 0 83%
II 14 60 27 2 58%
III 7 13 66 8 70%
IV 0 5 21 1130%

LGA
BIRADS I II III IV CA

Tr
ut
h

I 69 15 3 0 79%
II 19 47 37 0 46%
III 1 25 64 4 68%
IV 1 4 5 2773%

BIF
BIRADS I II III IV CA

Tr
ut
h

I 74 13 0 0 85%
II 14 63 25 1 61%
III 1 27 54 1257%
IV 0 2 19 1643%

Texton I
BIRADS I II III IV CA

Tr
ut
h

I 72 15 0 0 83%
II 12 73 18 0 71%
III 2 26 55 1159%
IV 0 4 11 2259%

Texton II
BIRADS I II III IV CA

Tr
ut
h

I 76 10 1 0 87%
II 11 71 18 3 69%
III 1 23 64 6 68%
IV 1 2 14 2054%

Comb.
BIRADS I II III IV CA

Tr
ut
h

I 79 8 0 0 91%
II 11 78 14 0 76%
III 1 19 70 4 74%
IV 1 1 11 2465%

make the sum of the outputs over all the four BIRADS classes equal to 1, they are normalised
by P(Bj | x) = epB j (x)/∑4

c=1 e
pBc (x), where P(Bj | x) is the normalised value of pBj(x).

Table 1 shows the classification results obtained by using the five modelling strategies.
The overall classification accuracy (CA) is 65%, 64%, 64%, 69%, and 72%, for LBP, LGA,
BIF, Texton I, and Texton II, respectively. The best classification result is obtained by Tex-
ton II, which is followed by Texton I, providing the second-best result, while LGA and BIF
perform worst among these five methods. In addition, we investigated the performance of
combining the outputs of the five individual classifiers. A weighted average combination
rule was used to compute the total probability for each class. For a testing mammogram,
the total probability corresponding to the class Bj (denoted by Psum(Bj)) is obtained by
Psum(Bj) = ∑5

t=1wtP(Bj | xt), where P(Bj | xt) is the output of the tth classifier, and wt is
the corresponding weight value. We set w1 = 0.16, w2 = 0.12, w3 = 0.12, w4 = 0.32, and
w5 = 0.28 experimentally, but small variations provided similar results. The obtained over-
all CA is 78%, which indicates better performance compared with those obtained by the
individual classifiers. The resulting confusion matrix is also shown in Table 1.

We compared the obtained results with publications where the BIRADS criterion was
used for breast density classification. Petroudi et al. [8] modelled parenchymal patterns of
the whole breast with a statistical distribution of textons. They obtained an overall CA of
76% for the Oxford Database. Oliver et al. [7] extracted morphological and texture features
from dense and fatty tissue regions. They obtained an overall CA of 77% for the MIAS
database, which increased to 86% when the Bayesian combination of the kNN classifier and
the C4.5 decision tree was used. He et al. [4] developed a number of mammographic image
segmentation methods for mammographic risk assessment. The best classification accuracy
that they recently obtained was 75%. It is shown that our results are comparable to related
publications. Note that the same database and the same classification ground truth were used
in [4, 7], which enables a direct comparison.

4 Discussion and Conclusions
There are several parameters in the five modelling strategies. One common parameter in
LBP, LGA, and Texton II is the size of the local neighbourhood of breast tissue pixels.
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Using a large neighbourhood will drastically increase the feature space dimensionality. In
LBP and LGA, the number of histogram bins grows exponentially as the neighbourhood size
increases, which would raise the risk of overfitting the data and result in sparser histograms.
A second parameter in LGA is the greylevel resolution, which also has a significant effect
on the feature space dimensionality. For the texton based strategies, increasing the number
of textons would also result in an increased risk of overfitting for the K-Means clustering.
The scale parameters in the filter banks and the image spatial resolution involve the multi-
resolution aspect, which could be further investigated.

In summary, we have presented an approach to modelling breast tissue based on a statis-
tical analysis of local appearance. We generated a visual dictionary of generic breast tissue
appearance by aggregating local features across different density classes. We investigated
five types of local features and evaluated their performance quanlitatively and quantitatively.
To our knowledge, this work is the first attempt to combine different modelling strategies for
breast density classification. The experimental results indicate the validity of the approach.
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