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Efficient automatic segmentation of vessels
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Abstract

The segmentation of tubular structures is still an open field of investigation, particu-

larly in medical imaging, where the quality of the image is poor with respect to natural

images. Despite the quality of state-of-the-art segmentation methods, little effort has

been devoted to the computational efficiency of the algorithms. Efficiency is an impor-

tant topic, since intra-operative computer assisted interventions require near real-time

performance. In this paper, we present a simple, yet effective, algorithm that efficiently

segments vessels in 2D images. The algorithm requires no initialization and has a com-

putational cost of O(SN logN), where S is the number of scales and N is the number of

image pixels. Results on the DRIVE dataset show that the proposed method has near

state-of-the-art performance with very little computational burden.

1 INTRODUCTION

There is a vast literature in the area of vessel analysis and segmentation. A detailed review

of existing vessel extraction techniques is given in [5]. Among the existing techniques,

machine learning-based techniques may use knowledge about appearance of blood vessels

in the segmentation process [11]. Hessian-based techniques analyze the eigenvalues of the

Hessian matrix to perform the vessel segmentation [3]. Other techniques use medialness

functions [6] as vessel detection filters. The great majority of these methods have high

computational costs and/or require manual initialization of one or more seed points. We

propose an efficient algorithm which is based on the following ideas: (1) detect blobs, tubular

structures and edges through linear filtering, without having to compute the Hessian matrix

for all pixels/voxels; (2) select a number of seeds based on the novel EdgeLoG measure and

reject blob-like points by means of eigenvalues analysis, so that we limit the Hessian and

eigenvalues computation only to potential seed points; (3) use a region growing approach

in which edge information is used to stop the propagation. We validate our method on the
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(a) (b)

Figure 1: Edgeness, Laplacian of Gaussian and EdgeLoG responses of (a) a 1-D edge signal

and (b) a 1-D tubular signal.

DRIVE dataset1, obtaining a kappa value of 0.6991, which compares well with much more

sophisticated state-of-the-art methods.

2 METHOD

The method combines an edge detection operator with a blob detection operator and exploits

their properties to obtain a negative signal in the presence of vessels. The approach com-

putes the Edgeness and the Laplacian of Gaussian of an image. Edgeness obtains a positive

response in the presence of edges and the Laplacian of Gaussian obtains a positive/negative

response where there is contrast and 0 in constant regions. The combination of both signals

is able to distinguish between tubular structures and edges and provides a negative response

with a local minimum in the middle of the vessels.

Fig. 1 outlines the basic idea of the approach on a 1D toy problem. Fig. 1(a) shows the

response of the operators to an edge signal. The response of the combined operator is always

positive. Fig. 1(b) shows the response of the operators to a tubular-like signal. In this case,

the response of the combined operators has a negative local minimum in the middle of the

tubular structure. Then, we select reliable local minima in the middle of tubular structures

and use them as seeds in a region growing process. Since the Laplacian of Gaussian signal

can detect blobs, we reject all seeds that represent blob-like structures.

2.1 EdgeLoG computation

Let I(x,y) be a grayscale image of any size. The scale space representation of I(x,y)
is defined as the image convolved with a family of Gaussian kernels [7]: L(1)(x,y;σi) =
G(x,y;σi) ∗ I(x,y) where G(x,y;σi) is a Gaussian kernel of standard deviation σi. We also

define a k-modified scale space: L(k)(x,y;kσi) = G(x,y;kσi) ∗ I(x,y) where k is a con-

stant and G(x,y;kσi) is a Gaussian kernel of standard deviation kσi. We define the Ed-

geness signal as E(x,y) = maxσi
||∇L(·)(x,y;σi)|| where L

(·)
x (x,y;σi) and L

(·)
y (x,y;σi) are

the normalized first derivatives of L(·)(x,y;σi) as in [7]. The Laplacian of Gaussian is

∇2L(·)(x,y;σi) = L
(·)
xx (x,y;σi)+L

(·)
yy (x,y;σi) where L

(·)
xx (x,y;σi) and L

(·)
yy (x,y;σi) are the nor-

malized scale-space second derivatives [7].

1http://www.isi.uu.nl/Research/Databases/DRIVE/
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We propose a new measure, named EdgeLoG which conveniently combines the Lapla-

cian of Gaussian and the Edgeness signals.

EL(x,y) = min
σi

(∇2L(1)(x,y;σi)+ ||∇L(k)(x,y;σi)||) (1)

The rationale behind this new operator is the following: (1) the Laplacian of Gaussian has

a strong negative response in the presence of bright blobs, tubular structures and edges; (2)

Edgeness obtains a positive response in the presence of edges and is 0 in the middle of

vessels; (3) we remove the negative response of the Laplacian of Gaussian at edges while

maintaining negative values in the middle of the vessels, using the Edgeness response (see

e.g. Fig. 1). However, using the same standard deviation for both detectors has proven

not to work properly. Therefore we introduce a constant k which modifies the Edgeness

response and compensates responses to edges and tubular structures. The constant k can be

computed as the minimum value that provides a negative response in ridges and a strictly

positive response at edges.

To allow the detection of different vessel sizes, we compute the response of the EdgeLoG

operator at multiple scales and we select the minimum EdgeLoG response over scales.

���

���

���

���

�

−����

−����

−����

�

����

����

����

����

����

����

����

����

���

����

�

���

���

���

���

�

(a) Input image (b) EdgeLog response (c) Edgeness (d) Final segmentation

Figure 2: 2D Segmentation of retinal vessels.

2.2 Seed selection/pruning

STAGE I: Once the EdgeLoG signal is obtained, we search for local minima to define the

initial set of seeds.

STAGE II: Not all local minima are reliable seeds. To reduce the number of seeds, we

compute an image dependent threshold ε < 0 using the Otsu method [10] on the EdgeLoG

intensities of the previously computed seeds, pruning seeds with EdgeLoG> ε . This process

already rejects a consistent quantity of seeds (96.07 % on average).

STAGE III: Some of these minima may belong to blob-like structures. To identify blob-like

seeds, we compute the Hessian matrix of the seed locations at the respective dominant scale,

and compute their eigenvalues |λ1| ≤ |λ2|. The ratio r = |λ1|/|λ2| ∈ [01] is a nice indicator

of the blob-ness and saddle-ness of the structure. We want to reject as many non-vessel

structures as possible. Therefore, we remove seed points having r > 0.5. In this way, we

limit the possibility of using some false positives as seeds, which could induce severe errors

in the region growing process. Nonetheless, removing a large amount of true positives is

not a problem to our algorithm since the proposed region growing approach can produce

satisfactory results with just one seed per vessel branch (see Fig. 2(d)). Fig. 3(a) and Fig.

3(b) present respectively the sensitivity and false alarm rate and the precision of the seed

points in three different stages. Note that the sensitivity and the false alarm rate decrease as

we remove potentially erroneous seeds while the precision tends to increase.
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(a) Variations in sensitivity & false alarm rate (b) Variations in precision

Figure 3: Seed pruning.

2.3 Region growing

To segment the vessel regions using the selected seeds, we employ a classical region growing

method. The region growing process is driven by two hypotheses: (1) the region should

grow in the direction of vessels to include areas where no seeds are present and (2) the

region should grow in the orthogonal direction until we reach the edges of vessels to provide

an accurate segmentation. To achieve these aims, we use the EdgeLoG and the Edgeness

operators. Being (xp,yp) a seed or a pixel that belongs to the region growing frontier, we

analyze its 8-neighborhood to check if to propagate the frontier or not. Being (x j,y j) one

neighbor of (xp,yp) that has not been analyzed previously, we set the pixel as the new frontier

if the following constraint is satisfied:

EL(x j,y j)< tEL ∪
E(x j,y j)−E(xp,yp)

||(xp,yp)− (x j,y j)||
≥ tE (2)

where tEL ≤ 0 and tE ≥ 0 are two algorithm parameters. Equation (2) makes the algorithm

grow through the negative valleys of the EdgeLoG signal (see Fig.2(b)) and allows the al-

gorithm to “climb” the Edgeness map, until the ridges are reached (see Fig. 2(c)). A nice

property of the proposed method is that the theory behind the EdgeLoG and Edgeness maps

suggests a theoretical value for the parameters: tEL = 0 and tE = 0. Nonetheless, due to the

discrete domain of the image and noise, we set tEL =−2.5 ·10−3 and tE = 2.5 ·10−3.

3 VALIDATION

The method has been tested on the DRIVE database. The database contains 40 retinal images

divided into a training set and a test set, containing 20 images each. Since our algorithm does

not require a training step, we limit our evaluation to the test set. In all the results shown in

this paper, the set of scales is Σ = {0.8,1.75,3.5}. For the given scales, a value of k= 1.256

has been obtained. Table 1 shows the results of our method compared to state-of-the-art

algorithms, as reported in the DRIVE website2. Our method performs well compared to the

state-of-the-art while being less computational expensive and much less complicated than

other algorithms.

2http://www.isi.uu.nl/Research/Databases/DRIVE/results.php
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Table 1: Performance of vessel segmentation methods on the DRIVE database.
Method Accuracy Kappa

Human observer 0.9473 (0.0048) 0.7589

Staal [12] 0.9442 (0.0065) 0.7345

Niemeijer [9] 0.9416 (0.0065) 0.7145

Our method 0.9345 (0.0060) 0.6991

Zana [13] 0.9377 (0.0077) 0.6971

Al-Diri [1] 0.9258 (0.0126) 0.6716

Jiang [4] 0.9212 (0.0076) 0.6399

Martínez-Pérez [8] 0.9181 (0.0240) 0.6389

Chaudhuri [2] 0.8773 (0.0232) 0.3357

All background 0.8727 (0.0123) 0

4 DISCUSSION

The proposed algorithm aims at performing a reasonably good segmentation while limiting

the computational cost to the very minimum. The use of linear filtering at different scales

allows a quick detection of a certain number of candidate seeds, without the need of com-

puting the Hessian and its eigenvalues for all the pixels in the image. While this could be a

minor gain in the algorithm speed for 2D images, it is a huge advantage for 3D data, where

the computation of the Hessian and its eigenvalues is extremely costly. To properly deal with

possible false positives in the first part of the detection, we employ a Hessian analysis only

on previously selected seeds; in the proposed experiments the selected seeds are 0.16% of

the total image. Moreover, the dominant scale can be easily computed from the EdgeLoG

operator, then reducing the computation of eigenvalues to only one scale per seed pixel.

The region growing is very efficient and uses a very limited local information, namely the

EdgeLoG map and the local gradient of the Edgeness map. The computational cost is mainly

dominated by the Gaussian filtering, so that the computational cost is O(SN logN), where S

is the number of scales and N is the number of image pixels. It is worth mentioning that this

part of the algorithm can be easily parallelized.

The method has several interesting properties: (1) the use of the LoG allows having neg-

ative EdgeLoG values in presence of bifurcations, so that the region growing can actually fill

bifurcation areas; (2) differently than methods that use the eigenvalues of the Hessian matrix,

the method does not produce less accurate results in vessels presenting high curvature; (3)

finally, thanks to the Edgeness signal, strong edges are suppressed while other methods tend

to identify straight edges in 2D images as vessels.

Nonetheless, the method has some limitations to be approached in future research: (1)

the use of the Edgeness signal, especially at coarser scales, could potentially mask important

information at finer scales, causing e.g. poor segmentation of orthogonal vessels branches

whose contrast is much lower than the main vessel; (2) the implemented region growing has

no sub-pixel accuracy and very little vessels can be lost in the region growing process due to

EdgeLoG and Edgeness discrete lattice.

Finally, a discussion should be devoted to the similarity and differences with the method

presented in [8]. Our method does not need the computation of eigenvalues of Hessian

matrix. The proposal of the EdgeLoG signal, with appropriate k parameter is totally novel.

Despite both methods use a region growing approach, we have theoretical basis on parameter

selection, and our method requires much less computational cost: we do not perform region

growing of the “background” class.
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5 CONCLUSION AND FUTUREWORKS

In this paper we presented an efficient method for segmentation of vessels in medical images.

Despite its low computational cost, it demonstrated to perform as good as state-of-the-art

algorithms on the DRIVE dataset. Future works encompass: (1) the use of a classifier to

learn the constraints for the region growing propagation as a function of local image features;

(2) implementation of a 3D version of the method and subsequent testing on CT data.
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