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Abstract

We present a novel framework for inferring 3D carpal bone kinematics and bone

shapes from a single view fluoroscopic sequence. A hybrid statistical model representing

both the kinematics and shape variation of the carpal bones is built, based on a number of

3D CT data sets obtained from different subjects at different poses. Given a fluoroscopic

sequence, the wrist pose, carpal bone kinematics and bone shapes are estimated itera-

tively by matching the statistical model with the 2D images. A specially designed cost

function enables smoothed parameter estimation across frames. We have evaluated the

proposed method on both simulated data and real fluoroscopic sequences. It was found

that the relative positions between carpal bones can be accurately estimated, which is

potentially useful for detection of conditions such as scapholunate dissociation.

1 Introduction

The diagnosis of wrist pain is frequently achieved by inspection of 2D video fluoroscopic

sequences showing movement of the hand in radial-ulnar or flexion-extension motion. This

qualitative interpretation requires the inference of the 3D movement of the carpal bones from

the 2D sequences, and requires considerable experience from the practitioner. We seek to

achieve a quantitative analysis by computer interpretation. During wrist movement, the eight

carpal bones follow a complex, multi-dimensional trajectory, making interpretation of radio-

graphs difficult. For this study we have trained a hybrid statistical model (SM) from a set of

CT images from different subjects at different poses. Subsequently, the full 3D carpal bone

motions can be recovered by matching the SM with the fluoroscopy sequences through 3D-

2D image registration techniques. A number of studies have sought to represent the carpal

kinematics using CT or MR data. Van deGiessen et al. [6] presented a 3D rigid registration

method based on segmented meshes, which aims to build SM of carpal bones. More recently,

they introduced a 4D statistical motion model that locally describes the movement patterns

of the carpal bones [7]. 3D-2D registration has been the subject of many studies (e.g. [5]),

mainly in the field of registration of pre-operative MR or CT images to intra-operative 2D
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images. Our work differs from the above in that we seek to achieve registration of a 2D im-

age sequence to a 3D model (not derived from the same individual) to derive the kinematics

of an individual wrist.

The main contributions of this paper, distinguishing it from the aforementioned studies,

are: (1) A hybrid SM is developed representing both the complex kinematics and shape vari-

ation of the eight carpal bones plus radius and ulna. (2) The full 3D motion and bone shapes

are recovered by matching the SM with a single view fluoroscopic sequence: a difficult

ill-posed problem. (3) Our initial results show that the relative positions between the carpal

bones can be estimated accurately through the proposed framework. We are not aware of any

study which attempts to make a 2D to 3D inference in a system of this level of complexity.

The system consists of a training phase and a 3D-2D image registration phase. We cur-

rently have CT data from 10 subjects, each at five poses (neutral pose and two extreme poses

in flexion-extension and radial-ulnar deviation). In the training phase, only the data from the

neutral pose and two extreme poses in the radial-ulnar movement were used, as the radial-

ulnar movement is the current concern of this paper. The segmentation of each bone and

rigid registration parameters that align bones at different poses within and across the sub-

jects were obtained using an iterative segmentation and registration algorithm [2]. A hybrid

statistical model, representing both the kinematics and shape variation, was built from the

results of the segmentation-registration framework. The kinematic model was built based on

the transformation parameters, while the segmentation result was used to build the statistical

shape model for each individual bone. Three sets of parameters need to be estimated during

image registration in order to interpret the true 3D motion of the carpal bones: (1) Rigid

transformation parameters of the wrist and a global scale factor, denoted by θ={tx, ty, tz,
rx, ry, rz, s}. tx and tz are the in-plane translations in AP view, and ty is the out-of-plane

translation. r = [rx,ry,rz]T denotes the bone orientations, represented by Rodrigues param-

eter [3]. The magnitude of vector r is the rotation angle around the axis represented by the

normalised unit vector of r. s controls the distance between the centroid of each bone to the

origin in the radius, and the global size of the bones. (2) Kinematic model parameter bm that

produces valid poses of the carpal bones during movement. (3) Shape model parameters b
q
i

and scale factor si for each bone (i). In the 3D-2D image registration phase, the three sets

of parameters were estimated in sequence from each frame of the fluoroscopy sequences.

Detailed descriptions are given in the following sections.

2 Training of Kinematic Model and Shape Model

We use the six rigid transformation parameters for each bone to train the kinematic model.

The common coordinate system for all poses has an origin at a specified point in the radius

for one subject. The pose of one subject is described by (tx1, ty1, tz1, rx1, ry1, rz1, ..., tx10,

ty10, tz10, rx10, ry10, rz10)
t . (8 carpal bones, 1 radius and 1 ulna). The orientation parameter

allows for a continuous description of the wrist movement. Then the kinematic model can

be parameterised as,

M = µm+φmbm (1)

where the mean pose µm (m is a notation indicating the model parameters) and the principal

subspace matrix φm are computed from 3 (poses)× 10 (subjects) training samples using PCA.

The vector bm represents the kinematic parameters that describe the pose of M along each

principal direction. In our experiments, the first 8 significant components are used, which

keeps 98% of variation.
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The statistical shape model of each bone is a point distribution model, built using the

segmented volume of the same training subjects. The 3D structure of each bone is described

by a set of approximately 1000 points on the segmented surface. Correspondence between

these points across subjects was established by the minimum description length algorithm

[4]. The deformable shape model is then described as,

Qi = µ
q
i +φ

q
i b

q
i (2)

where µ
q
i and φ

q
i (q is a notation indicating the shape parameters) are the mean shape and the

principal subspace matrix for the ith bone. b
q
i is the shape model parameter to be estimated.

In order to keep the complexity within limits, only the first 3 significant components are used

which keeps 84% of variation.

Based on the point distribution model of each bone and the kinematic model, a hybrid

statistical mesh model can be built by using the Crust mesh construction algorithm [1]. Fig-

ure 1 shows the poses of the first component of the kinematic model (represented by the

mean shapes of each bone) and the shapes of the first component of the scaphoid.
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Figure 1: Top row: The poses of the first component of kinematic model. Bottom row: the

first component of the shape model of the scaphoid. In each case the mean +/-1.5s.d. are

shown.

3 3D-2D Image Registration

The statistical mesh model from the training data is then used to match with the fluoroscopic

sequence to infer the 3D motion and bone shapes. Figure 2(a) summarises the registration

process. Detailed descriptions are given in the following subsections.

3.1 Cost function

Preprocessing of the fluoroscopic image consists of normalising the local intensity to zero

mean and unit standard deviation, followed by anisotropic diffusion. Figure 2(b) shows

an example of the gradient magnitude map of the fluoroscopic image after enhancement.

To optimise the pose parameters we iteratively generate projections from the mesh model

with updated model parameters. Taking the mesh model as a binary volume, the projected

intensity is negatively proportional to the sum of binary values along the ray from the source

to each pixel in the image plane. Figure 2(b) shows an example.
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Figure 2: (a) Overview of the 3D-2D image registration process. (b) The gradient magnitude

map of the fluoroscopic image after enhancement (cropped to show the region of interest)

(top) and the simulated image from mesh model (bottom).

To evaluate the similarity between the fluoroscopic image and the simulated image, we

use the cost function shown in Eqn. (3), based on the gradient along horizontal and vertical

directions as well as the gradient magnitude of the two images. The adjacent frames of the

current fluoroscopic image were also taken into account in the cost function to make the

estimated poses smooth across frames.

Taking C(A,B) as the Normalised Correlation Coefficient between two images A and B,

we can write the cost function as:

E =C(Omk−1,Omk)+ ∑
p=k−1,k,k+1

wp(C(Imp,Dmk)+C(Ixp,Dxk)+C(Iyp,Dyk)) (3)

where k is the current frame number of the fluoroscopic sequence. Imp, Ixp and Iyp are

the gradient magnitude, vertical gradient and horizontal gradient of the fluoroscopic image

at the pth frame respectively. Dmk, Dxk and Dyk are the corresponding values of the simu-

lated image. The second term calculates a cross-correlation between sets of three adjacent

frames with weights wk−1, wk and wk+1= 0.2, 0.6, 0.2 respectively, making the estimated

pose smooth across frames. For the first term of the cost function, the vertices in the statisti-

cal mesh model are projected to the image plane; we assume the intensities at those projected

points are similar across adjacent frames. Omk−1 and Omk represent the gradient magnitude

of the previous frame and the current frame at the projected correspondence positions. The

first term makes the shape of the cost function sharper, leading to a faster and more accurate

optimisation result. The (k− 1)th frame and (k+ 1)th frame are not evaluated for the first

and last frame respectively.

3.2 Optimisation

The optimisation method used is the best neighbour search combined with parabola fitting.

The multi-dimensional search space (θ, bm and bq) is explored iteratively by individual 1D

line search. The cost function is evaluated at the current position, positive and negative neigh-

bour positions (defined by a search range), then an optimum is found by fitting a parabola to

the 3 evaluated positions, and iteratively refined by reducing the search range until conver-

gence.

In our case, the true sizes of the bones are unknown; recovering the 3D pose from a sin-

gle image is therefore a difficult, ill posed, problem. Any movement along the out-of-plane

translation, could be compensated by scaling of the bone. We estimate parameters (except

ty) in the following sequence: tx, tz, rx, ry, rz, bm, s, si and b
q
i . After convergence, the
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estimated pose of the current frame is used as the starting pose for the next frame. The shape

model parameters b
q
i are only estimated once in the first frame, as these are not improved sig-

nificantly when we include more frames and the fitting is made significantly more complex

and time consuming. The whole process was performed in a 3-level multi-scale framework

at each frame to enhance the robustness of the registration.

4 Evaluation

As there is no ground truth relating the fluoroscopic sequences to the CT data, we evaluated

our framework based on a number of simulated fluoroscopic sequences generated from the

3D CT data. All CT volumes have been resampled to an isocubic volume with voxel dimen-

sion of 0.5 mm. We linearly interpolated a number of poses between the neutral pose and

two extreme poses of radial-ulnar deviation in a full movement cycle containing 50 poses for

each of 10 subjects. The ray-casting method was then used to generate a simulated fluoro-

scopic sequence from those interpolated 3D data. We evaluated the proposed framework in

the leave-one-out manner. The 3D pose of the simulated test subject was then calculated as

described in section 3, and registration error measured by the 3D Euclidian distance of each

corresponding point of the mesh between the target pose and the estimated pose is presented

in Table 1. The error of the registration is mainly caused by the ill posed problem (confusion

between the scale and translation along the out-of-plane direction), whereas the errors along

the in-plane directions are very small with average error of about 1 mm and maximum error

within 2mm.

It is important to mention that the relative positions of the carpal bones with respect to

each other can be estimated much more accurately than the absolute positions of the individ-

ual bones. The registration error of the 3D distance between the centroid of Triquetrum and

the centroid of Lunate (dTL), and the distance between the centroid of Lunate and the cen-

troid of Scaphoid (dLS) were also measured. The errors are 0.59±0.37 mm and 0.91±0.50

mm for dTL and dLS respectively, compared to a bone size of about 15-20 mm. One of

the conditions that may be assessed using this method is dissociation, where the distance

between the bones is larger than normal. Scapholunate dissociation is one of the most com-

mon of these. We normalise the dLS by dividing it by the estimated global scale factor

s and an average of the local scale factors for lunate and scaphoid. From the tested 10

subjects, we successfully identified the subjects suffering from scapholunate dissociation

(dLS=19.39±0.77 mm) from the normal subjects (dLS=17.25±0.42 mm). Making this type

of measurement without a 3D statistical model would be impossible.
Table 1: The average error in mm, measured in 3D, between the target and estimated

correspondence points of each carpal bone of 10 subjects: Triquetrum(Tri), Lunate(Lun),

Scaphoid(Sca), Pisiform(Pis), Hamate(Ham), Capitate (Cap), Trapezoid (Trd) Trapezium

(Trm). The measurement errors of dTL and dLS.

eTri eLun eSca ePis eHam eCap eTrd eTrm Total eTL eLS

Err3D 2.7±1.3 2.6±1.3 3.3±1.8 3.4±1.9 3.3±1.9 3.3±2.0 3.3±2.3 3.8±2.2 3.2 ±1.9 0.59±0.37 0.91±0.50

ErrX 0.8±0.7 1.0±0.8 1.1±0.9 1.2±1.0 0.9±0.7 1.1±0.8 0.9±0.7 1.1±0.9 1.1 ± 0.9 / /

ErrY 1.9±1.4 1.5±1.3 2.5±1.9 2.4±2.0 2.7±2.1 2.7±2.2 2.8±2.5 3.1±2.3 2.3±2.0 / /

ErrZ 1.3±1.0 1.3±1.0 1.1±0.9 1.3±1.1 1.3±0.7 0.9±0.7 0.8±0.6 1.1±1.0 1.2±1.0 / /

We also tested our framework on real fluoroscopic sequences. Although the matching

error cannot be quantified, the registration results show good visual correspondence and have

been confirmed by a clinician. A sample frame of the matching result and the corresponding

3D pose are shown in Fig. 3 in which the projected contours from the 3D mesh model are

superimposed on the preprocessed fluoroscopy image. The estimated 3D mesh model in the
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palmar and dorsal views are shown in middle and right respectively.
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Figure 3: Registration result of one frame from a real fluoroscopic sequence.

5 Concluding Remarks

We have presented a complete framework that is able to infer the 3D motion of carpal bones

from a single view fluoroscopic sequence. It uses a hybrid statistical model to estimate both

the kinematics and bone shapes from the fluoroscopic sequences allowing the motion of

carpal bones during radial-ulnar deviation to be estimated. Particularly, the relative positions

between carpal bones can be estimated accurately. This is potentially useful for detection of

dissociation conditions, such as scapholunate dissociation, where the underlying pathology

is a rupture of one or more ligaments, and the diagnosis rests on a judgement regarding the

joint separation.

In further work we will extend the current statistical model with more training data (in

progress) and test the framework for the flexion-extension movement.
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