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Abstract

When multiple scanners are used to acquire diffusion MR image data from the same
patient, there is no guarantee that identical settings will result in comparable images of a
specific organ and region. Despite this, for clinical use, any software developed to com-
pute the apparent diffusion coefficient (ADC) must be expected to give equivalent results.
What is needed is a phantom study with appropriate design which supports a calibration,
so that appropriate settings for equivalent diffusion measurements can be defined among
different scanners. Ideally the calibration process needs to be fully automatic, so that it
can be used by non-experts in a clinical setting. We intend to develop software which
automatically locates five cylinders in an ice water phantom and then measures the differ-
ent diffusion values in the cylinders. The location algorithm uses an object recognition
process which culminates in robust Likelihood estimation of position and orientation,
computed using probabilistic Hough Transforms. This process estimates cylinder loca-
tions to an accuracy of a few pixels, even in the presence of field inhomogeneity and
significant spatial distortion. Our assessment of performance includes quantification of
possible errors due to; data inaccuracy, distortion due to poor shimming, signal to noise,
field inhomogeneity and image clutter (i.e. ice). Results indicate that reliable localisation
can be obtained using these methods for realistic clinical settings.

1 Introduction

Diffusion weighted (DW) magnetic resonance (MR) imaging has recently become a focus
of attention for facilitating the diagnosis and treatment of tumors [1]. Specifically, to mon-
itor the effect of new drugs administered to treat cancerous organs, DW-MR imaging is an
attractive method compared to other alternatives including open surgery. However, there are
many difficulties associated with the analysis of DW-MR images [2]. Recomendations have
been made for tackling these problems, in order to ensure the validity of any corresponding
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conclusions [2]. A common quantity that is used when analysing these images is the appar-
ent diffusion coefficient (ADC). For consistency, it is important that any software developed
to compute the ADC must give equivalent results on different scanners. One method to
achieve this uses a non-biological phantom. For instance, Chenevert et al. [3] have recently
performed a study using an ice-water calibration phantom and shown that it is possible to
get good quantitative agreement between ADC’s measured on different scanners. Gunter
et al. [8] have used a phantom for the similar purpose of multi-centre MR (not DW-MR)
scanner calibration but with a different design (and without using ice) and a different pattern
recognition method.

This idea has recently been developed as part of the QUIC-CONCEPT project !, provid-
ing us with two diffusion MR data sets. One data set corresponds to the standard shimmed
scanner, while the other corresponds to a poorly shimmed scanner (Fig. 1). For diffusion
measurement, image data are generally acquired at multiple b values, and exponential fits to
this data generate diffusion parameters. In each data set there are five image slices for each
of the four b values used (0, 100, 500 and 900), giving a total of 40 images with which to test
our software. There are five cylinders of small diameter located inside the main large cylin-
der which is filled with ice and water. This maintains the temperature so that the measured
diffusion is highly repeatable. One of the five cylinders is placed in the centre while the other
four are symmetrically located around the centre (Fig. 1). Each of the five cylinders is filled
with a different liquid which has specific diffusion characteristics. An automated calibration
must first locate the five cylinders and the main topic of this paper is this task. We intend
to use object recognition algorithms to identify and locate the phantom. However, the basic
design of the phantom has 4-fold rotational symmetry, and this generates many combinato-
rial possibilities for location and orientation of the phantom which need to be combined and
assessed. Probabilistic Hough transforms are used for this task, implemented as approxi-
mations to a likelihood estimation process, in order to deal with the large variations in the
constraints on location parameters implied by the measured data.

Figure 1: From left-to-right: example image slices from the standard shimmed (a) and poorly
shimmed (b) phantom data; there are five different liquids with different diffusion characteristics inside
the five cylinders, with ice and water at 0° temperature around them (ice appears as black irregularities);
L(x,y) for the standard (c) and H (x,y) for the tuple Hough transfroms (d).

The combined process is expected to generate accurate estimates of phantom position
even in the presence of image features such as inhomogeneity and ice, as well as being robust
to significant spatial distortion and poor SNR. These issues are expected to compromise
approaches based upon direct grey-level image matching and iterative optimisation.

'"The QUIC-CONCEPT project has received funding from the European Union for the Innovative Medicine
Initiative.
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2 Methods and Results

We require a strategy to locate pixels falling inside each of the five cylinders in order to
measure the diffusion of the liquid inside each. In our software, developed for this purpose,
edge data is first extracted from the image and linked into extended curves. These curves
are then approximated by polygonal approximations for convenience [4]. Each line in the
polygonal description is then used as the focus for construction of a geometric histogram [5].
Geometric histograms are two dimensional and encode relative orientation and perpendicu-
lar distance between lines convolved with a PSF (point spread function) at a scale consistent
with these measurements. The histograms can therefore be considered as density estimates
of geometric co-occurrence. There are alternative versions of this basic representation which
embody varying degrees of invariance. For the current work we used the most discrimina-
tive (least invariant) histogram, which considers two possible directions for each scene line
separately, in order to compute a full 2z relative orientation. Two histograms are generated
for each scene line over a range of possible scales.

The full set of histograms for all lines in the image are matched to a database of simi-
lar histograms generated using the model on the basis of a Bhattacharrya overlap [7]. The
best match score and scale for each line is interpolated, so that each candidate match pro-
vides a constraint on the location, orientation and scale of the phantom in the image. The
list of N best candidate matches for each scaled scene line is used as the basis for a series
of probabilistic Hough transforms, which compute the robust log likelihood of centre, scale
and orientation for the phantom. The 4-fold rotational symmetry of the phantom requires
that N >= 4, and so we have used a value of N = 8 to guarantee that the histograms with
high scores which are passed to the hough transform include the correct histogram. Likeli-
hoods are computed on the basis of a perturbation model for the polygonalisation process,
which assumes that errors on lines can be modelled using a constant uniform spherical error
distribution o), on the end points [6]. These errors are propagated through to the parameter
spaces in order to compute the required Hough entry distributions. The error model assump-
tion is checked and the over-all scale of the spherical error determined using corresponding
chi-squared distributions in data. A localisation error model with 0, = 2 pixels was found
to be approximately the correct value for this data.

Orientation and scale Hough transforms are computed as 1D histograms. The location
Hough transform is 2D and entries are made for pairs of matched scene lines (n,m), i.e. a
tuple Hough transform. For Gaussian density functions, the equivalent probabilistic form for
this Hough transform H (x,y) used to find the centroid of the phantom is given by

H(x,y) = Y ¥ loglp(x,yln)p(x,ylm)] = Y loglp(x,y|m)] Y log[p(x,y|n)]

so that the total Hough entry can be considered as the square of the log Likelihood (i.e.
standard Hough transform)

H(x,y) = L(x,y)* = (3 log|p(x,ylm)])*

In practice the 2D Gaussian distribution p(x,y|n,m) = p(x,y|n)p(x,y|m) is computed di-
rectly using error propagation and then truncated at 3 S.D. to form a robust kernel. In com-
parison to the conventional Hough transform, the tuple based construction helps to remove
background from the Hough array (Fig. 1). Cuts are placed on the allowable accuracy of each
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pairwise constraint, as well as relative orientation at 5 S.D. of the propagated uncertainty in
order to improve computational efficiency and further reduce background entries.

Estimated location, orientation and scale are the result of a global search of the param-
eter space (followed by a quadratic peak fit), thereby avoiding issues associated with local
minima. These parameters are then available to project the model into the image in order to
predict the location of each cylinder.

2.1 Evaluation of Cylinder Localisation

As a simple approach, we assess how well our algorithms can locate the cylinders for all
image slices provided across all b values (40 images in total). This can be done by measuring
the largest pixel shift between predicted and observed cylinder edges. Once this value is
known it is possible to predict the quantity of usable pixels which might be reliably found
in a circle around the predicted cylinder centre. Pixels falling inside these circles, may then
be used to compute an average diffusion measurement. Fig. 2 shows the model overlayed
on the image slices of Fig. 1. Here for the standard shimmed phantom a good match is
achieved while for the poorly shimmed there is a slight mis-match. Here, it is clear that there
is a systematic clockwise rotation of the model relative to the data. As the centroid of the
phantom is easily estimated, the main localisation error for undistorted image geometry is
generally of this nature, allowing us to attribute a sign (clockwise or anti-clockwise) to the
residual error.

Figure 2: Locating all cylinders on image slices from standard shimmed (left) and poorly shimmed
(right) data (Fig. 1) using our software; the display window is shown before and after zooming in
to count the maximum out-of-fit pixels; the main error in localisation is generally in the form of a
rotation; the maximum observable rotation error can be given a sign (positive if clockwise) in order to
help identify systematic rotations across multiple images.

Tabulated results in Table 1 show that the mean shift of the model is comparable for
both data sets, though there is evidence of a systematic rotation for the poorly shimmed data,
due to significant systematic spatial distortion (columns 2-3). In both cases however, the
mean maximum observed shift is ~ 3.5 pixels for an internal cylinder diameter of 18 pixels
(i.e. 20%). This error does not seem to come from problems of statistical stability (which is
expected to be much better than one pixel), but rather spatial distortion of the original image.
However, this does not mean that the achieved fit is distortion limited as there is also slight
error on rotation due to noise and ice clutter.

In Table 1 (columns 4-5), we also list the percentage of field inhomogeneity based on the
maximum coil correction together with the mean (first number) and the standard deviation
(second number) for same image slices of different b values (every four rows). The degree
of this inhomogeneity is substantial (a factor of two across the phantom) but does not ap-
pear to produce significant localisation errors. This is expected as the localisation is based
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upon edges not absolute grey-level values. Further, in Table 1 (columns 6-7), we tabulate
the percentage of ice in each image slice. These values are computed from the b = 900, via
a manually controlled thresholding process following inhomogeneity correction, to an accu-
racy of around 5%. These typical percentages show that there is no observable correlation
between the amount of ice and the inaccuracies seen in model matching (columns 2-3). We
notice that these percentages are slightly larger for the case of poorly shimmed images.

image shift shift inhomogen- inhomogen- ice ice SNR SNR
slices(b)  std por eity (std)% eity (por)%  std% por% std% por%

01(0) +2 +3 100 140 145 1.76
06(100) +2 +2 142 129 1.69 1.75
11(500) +3 +4 125 137 141 1.66
16(900) +2 +2 100 120 518 60.1 158 196
116.7;20.54 131.5;8.96
02(0) -1 +2 100 143 1.66 193
07(100) +4 +3 108 121 147 1.79
12(500) +2 +2 100 100 159 1.75
17(900) 43 +2 100 120 546 619 169 201
102; 4.0 121; 17.57
03(0) +5 +2 76 106 1.70  2.20
08(100) +2 +4 125 114 1.74  2.39
13(500) -3 +4 100 100 1.67 2.00
18(900) +1 +5 80 120 529 630 173 203
95.25;22.44 110;8.79
04(0) +3 +2 114 120 1.81 198
09(100) +3 +2 93 93 1.59 198
14(500) -3 +4 78 80 1.74  2.27
19(900) 43 +1 80 83 552 653 187 194
91.25;16.56 94;18.2
05(0) -2 +3 100 100 1.81 220
10(100) -2 +2 80 87 1.66 1.80
15(500) +4 +2 78 80 1.83 195
20(900) -3 +1 80 100 636 658 193 207

84.5;10.38  91.75;9.94

Table 1: Results are listed for both the standard shimmed (std) and poorly shimmed (por) image data
sets; in columns 2-3 the positive sign for the number of pixels corresponds to the clockwise rotation
while the negative sign corresponds to the anti-clockwise rotation; see text for further details.

Finally, in Table 1 (columns 8-9), we list the percentage of signal to noise ratios (SNR).
Each ratio is computed from the distribution of second derivatives (for x and y) around zero,
in a central rectangular region including all five cylinders, following coil correction. It is
clear from the table that the SNR percentages are larger for the case of poorly shimmed
data. However, it can be seen that for different b values the SNR changes by amounts which
are small compared to measurement accuracy. Consequently, this level of noise is not large
enough to test the robustness of the software to poor SNR. Hence, we selected an image with
50% ice and low geometrical distortion and added extra random noise until the software
failed to locate the cylinders (where the midpoint of the predicted circles lies outside the
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required liquid). It was found that for a factor of 2.5x more noise there is no observable
degradation in performance, while the localisation algorithm fails 50% of the time at 3.4,
at which point the edge detector begins to fail to extract phantom structure. These noise
levels are well beyond the expected levels for phantom data, consequently poor SNR is not
expected to play a large part in the failure of localisation.

3 Conclusions

Our results suggest that the edge-based localisation method we have developed is robust to
the main issues determining phantom data quality, such as field inhomogeneity, ice and SNR.
In order to stay within the same range of image quality as seen in our tests we recommend
that the quantity of ice is not allowed to rise above 70% and the SNR in the water to be kept
above 5%. We have seen no evidence that the localisation process will not find the phantom
in the 40 images provided with the standard parameters used for testing. Since there are five
image slices per b value, it would be possible to check which of the five centres statistically
agree (majority vote) in order to remove occasional localisation failures.

Future work now requires us to address two main issues. The main cause of localisation
error is the spatial distortion which arises due to poor shimming. This cannot be accom-
modated by a localisation algorithm which assumes a rigid phantom model and implies that
something must be done to accommodate slight shifts during the estimation of diffusion
parameters. Also, the current algorithms localise the phantom with a 4-fold rotational am-
biguity, due to the symmetry of the phantom. An additional marker has now been added to
the phantom which we intend to use to select the correct rotation and as a quality check on
predicted location.
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