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Abstract

Diffusion weighted MRI is a non-invasive image technique for obtaining information
about the neural architecture of the brain. The measured diffusion signal is highly corre-
lated with the direction of the white matter tracts. Based on the transformed signal (either
in the form of orientation distribution function or fibre orientation density) it is possible
to estimate the fibre orientations, provided the algorithm used can cope with the noise
corrupted diffusion weighted image. This paper reviews the methods used to compute
the diffusion and fibre orientation distribution functions.

1 Introduction

Diffusion weighted MRI (DW-MRI) is a non-invasive imaging technique that allows to mea-
sure the displacement (diffusion) of water molecules. Applied to the brain, it can be used to
recreate the white matter tracts [3], study brain connectivity [26], and detect early changes
in the cerebral tissue [4].

Despite intensive research in the DW-MRI, very few methods have been used in clinical
applications. One of those that were successful though, was a high angular resolution dif-
fusion imaging (HARDI) protocol [13, 22, 32]. It allows to measure the diffusion signal in
a clinically feasible way (e.g. provides a good trade-off between the scan time and amount
of acquired data). The number of acquired volumes varies on application, but is usually
between 30 and 60. Among the methods utilising HARDI there are: generalized diffusion
tensor imaging [22], persistent angular structure MRI [17], q-ball imaging (QBI) [31], fibre
orientation estimated using continuous axially symmetric tensors [2], and diffusion orienta-
tion transform [23].

This paper reviews a QBI and methods related to the computation of diffusion orientation
distribution function (ODF) and fibre orientation density (FOD).
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Figure 1: Relationship between the diffusion signal (left) and ODF (right), simulated 90

fibre crossing, 8th order SHS, b= 3000 mm2/s.

2 Orientation distribution function
In diffusion MRI, the orientation distribution function (ODF) characterizes the 3D distribu-
tion of water diffusion, and is necessary to infer the fibre configuration. QBI [31, 33] is
a model-independent reconstruction scheme for HARDI. The diffusion ODF Y is defined
as the Funk-Radon transform of the diffusion signal E (see Figure 1 for visual relationship
between E and Y) and can be computed as:

Y(u) =
Z

q?u
E(q)dq, (1)

where both u and q are unit directions.
The numerical approach to calculate the equator integral required more data than was

available from HARDI (since the equator points did not coincide with the diffusion sam-
pling points), and the diffusion signal was interpolated using the spherical radial basis func-
tion (sRBF) [12]. Subsequently, Anderson [2], Hess [15, 16], and Descoteaux [9] have
independently and in parallel developed an analytical solution for the ODF reconstruction in
QBI using spherical harmonic (SH) [21] basis function and Funk–Hecke theorem. First, the
diffusion signal is approximated with a truncated spherical harmonic series (SHS) [1]:

Ê =
n

Â
l=0

l

Â
m=l

clmYm
l (q ,f), (2)

with Ê being the approximation of signal E using nth order SHS, Ym
l a spherical harmonic

function and cml a SH coefficient of order l and band m. The coefficients of the series are
found using the spherical harmonic transform (SHT):

clm =
Z 2p

0

Z p

0
E(q ,f)Ym

l (q ,f)sinqdqdf . (3)

In practice, the Equation 3 is rarely used and instead a discrete approximation of the
exact solution is found using a linear least squares method:

c= (YTY)1YTE. (4)

Here Y is a SH design matrix, and E is a vector containing the measurements. The diffusion
ODF can now be directly estimated from the SH representation of the diffusion signal as:

Y(q ,f)⇡
n

Â
l=0

l

Â
m=l

2pPl(0)clmYm
l (q ,f), (5)
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Figure 2: Convolution of a single fibre response with FOD (top – HARDI, bottom – ODF),
8th order SHS and b= 3000 mm2/s.

with Pl(0) being the associated Legendre function of order l evaluated at 0.
The ODF should be relatively smooth with a few maxima oriented along the direction of

underlying fibres. Unfortunately, due to noise the ODF has a lot of sharp spikes and needs to
be smoothed. Noise related peaks can be reduced by filtering SH coefficients [27], including
a regularization scheme in the signal approximation [10, 16], or by selectively removing
the noise-infested basis functions [20]. In the first two cases, the smooth ODF function is
produced at the cost of a lower angular resolution.

3 Fibre orientation density
Fibre orientation density (FOD) and fibre orientation distribution function (FODF) is a sharper
version of ODF. The spherical deconvolution introduced by Tournier [27] allows to compute
FOD directly from HARDI data. The measured signal E is a convolution of unknown FOD
F with the signal RE coming from a single fibre population (Figure 2, top):

E = F⌦RE . (6)

The single fibre response RE is either approximated from the most anisotropic voxels [27] or
on a voxel-by-voxel basis [2], and represented by rotational harmonics [14]. Since the SHT
is a Fourier transform (on the sphere) the convolution can be efficiently represented with a
matrix multiplication, or linear transformation of SH coefficients:

f ml = cml /rl , (7)

where f ml is a FOD spherical harmonic coefficient of l order and m band, and rl a rotational
harmonic coefficient of a single fibre response RE .

Ideally, with an infinite SH series the signal would deconvolve to a sum of delta functions
oriented along the underlying fibre tracts (Figure 2, FOD). But as the number of samples is
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Figure 3: Spherical deconvolution to a delta function (a), cosine power lobe (b) and spherical
deconvolution transform (c), simulated 45 fibre crossing, 8th order SHS, b= 3000 mm2/s.

limited, the series expansion of the signal has to be truncated which results in a smoother
FOD and introduces unwanted ringing near the centre of the lobe.

To remove the ringing, and partially reduce the false FOD peaks that are caused by
noise Schultz proposed deconvolution using a non-ringing cosine power lobe (cosh g , where
h depends on the size of SHS used) [25]. The resulting FOD is less sharp (Figure 3b) than
the classical deconvolution to a delta function (Figure 3a) [27].

Another way of acquiring FOD is based on sharpening the diffusion ODF. Using the same
spherical deconvolution method, it is possible to deconvolve a diffusion ODF to FOD using
a single fibre response ODF (Figure 2, bottom). Descoteaux provided a formal relationship
between ODF and FOD (called fibre ODF, or FODF, as it was derived from ODF) [11]. The
method, called spherical deconvolution transform (SDT), like cosine power lobe, produces
less sharp but more noise resilient FOD but, unlike cosine power lobe, introduces a regular
negative ringing (Figure 3c).

A different approach was sought by Kezele [18], who reconstructed the sharp diffusion
ODF by incorporating a spherical wavelet transform into the Funk–Radon transform. Also
Tristan-Vega [29, 30] modified the Funk–Radon approximation to the radial integral. By
including the Jacobian of the spherical coordinates in FRT he computed a true orientation
probability density function (OPDF). Similar approach, but with a different orientation func-
tion (both with and without SHT) was proposed by Özarslan [23] in a diffusion orientation
transform (DOT).

FOD has the same maxima as ODF, but the function itself should be sharp. The same
methods mentioned in the ODF regularization/smoothing can be used to reduce noise related
false peaks, but cannot guarantee the non-negativity of the FOD function. The improved de-
convolution algorithms proposed by Dell’Acqua [7], Sakaie [24], and Tournier [28] based on
iterative approach (with Dell’Acqua using a modified Richardson-Lucy deconvolution [6],
and Sakaie and Tournier a spherical deconvolution) address this.

Finally, it is important to note that the spherical harmonic basis functions are glob-
ally supported and thus are not well suited to describe sharp FODs. A recent study by
Michailovich, in which the HARDI signal (and subsequently ODF) is modelled using mul-
tiresolution bases of spherical ridgelets [19] can match the SH-based QBI (45 basis func-
tions) accuracy-wise with just a few basis functions (4 to 8).

4 Examples
Figure 4 shows diffusion signal, ODF, FODF, and two FODs (delta and cosine power lobe)
computed over the same region of interest of a whole-brain scan of a healthy male subject.
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Figure 4: HARDI signal, ODF, FODF, and delta and cosine power lobe FOD profiles plotted
over FA of a small region of interest. First column – least squares expansion, second column
– regularized expansion using Laplace–Beltrami smoothing operator (l = 0.05).

The image was obtained using a single-shot, spin-echo, echo-planar, diffusion-weighted se-
quence in a Philips 3T Achieva clinical imaging system1. Both least squares and smoothed
(using Tikhonov regularization with Laplace–Beltrami operator [8]) profiles are provided.

5 Conclusion

Every year new papers related to the processing of diffusion weighted images are published.
Methods for computing ODF and FOD has been studied for over 10 years now. This review
summarises recent development and provides some insight into the current state of the art in

1Acquisition matrix 112x112 with in-plane resolution 2⇥ 2 mm2; 52 slices with a thickness of 2 mm; b =
3000 s/mm2; TE = 72 ms; TR= 15292 ms; 61 evenly spaced diffusion weighting directions [5]; six b= 0 s/mm2

images acquired and averaged
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that broad field. Despite all the work summarized here, the ODF and FOD computation has
not yet reached its maturity and still offers a great opportunity for research.
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