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Abstract

The techniques and procedures associated with histology are, in most cases,
suitable for the diagnosis of colonic carcinomas. However, in cases such as epithelial
misplacement the morphology of a stained tissue sample is homologous to that of
cancer. This can lead to patients being misdiagnosed and undergoing unnecessary
surgery.

To prevent this surgery we suggest that the epithelium of tissue samples be
examined using infrared (IR) spectroscopy. In this study, IR maps of tissue sections
were registered to standard histology images so that epithelial specific spectra could
be collected. The differences between these spectra were explored by using Principal
Component Analysis (PCA). This paper provides a novel protocol detailing how
histology specific spectra can be collected. The potential usefulness of these spectra is
demonstrated through the separation of epithelial misplacement cases and colonic
carcinomas within PCA space.

1 Introduction
A pathologist will diagnose disease states by examining Haematoxylin and Eosin (H&E)
stained tissue sections under a microscope. Staining enables the structural morphology of a
tissue section to be highlighted and evaluated. Although this method of diagnosis is
generally very accurate, some benign conditions can still be misdiagnosed as cancer.
Epithelial Misplacement, EM, is an example of a benign pathology which often gets
confused with Polyp Cancers (PC) because its morphology is homologous to that of
invasive cancer.

EM polyps resemble PCs because of the environment in which they exist. EM polyps
are associated with the sigmoid colon and in this region polyps are easily damaged. This is
because the sigmoid colon is constantly fluxing and this movement will compress any
polyps found there. The damage affects the polyps structure and forces epithelium from the
exterior of the polyp into its interior. This forced movement means that when a tissue
sample is sectioned for pathological assessment the sections will contain epithelial islands
(indicated by a white arrow on Figure 2A). These islands are a sign indicative of invasive
cancer and their presence causes pathologists to suggest that the region surrounding these 
benign polyps be removed from the colon [1].
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However, for EM this surgery is unnecessary as only in invasiv
would these islands have malignant potential. In PC the islands are fo
cells which have moved under the influence of their own gen
biochemistry of PC islands will be different to that of the islands
Infrared spectroscopy (IR) can be used to characterise these bioche
facilitates the discrimination of cases of EM from PC [2], [3], [4].

2 Methods
In this study anonymous, retrospective, paraffin embedded tissue bloc
consultant histopathologist. From these blocks three contiguous 5µm
were cut and placed onto two normal histology slides and one IR r
One of the normal slides was stained with MNF116, a cytokeratin an
with H&E. Images of the standard histology slides were made from
lens of a Leica camera microscope. The IR images were measured
detector of the Perkin Elmer Spotlight 400 IR Spectrometer. The fo
then used to collect epithelial specific spectra for input into a classific
collection image processing was conducted using Matlab R2007A
USA) on a standard desktop personal computer equipped with an I7
processor and 8Gb of RAM.

2.1 Histology Image generation

The standard histology images are acquired as a series of overlapping
fashion. The overlapping images for each tissue section must firs
before this sample can be further analysed. To enable this, Sc
Transform (SIFT) descriptors were used to find points of correspon
overlapping images. The SIFT algorithm finds these points from
features of an image. It does this by constructing a difference of G
pair of overlapping images. A subsequent search for maxima and
pyramid means that keypoints [5] can be found. The minimum Euclid
gradient and orientation feature vectors made for these keypoint
correspondence between the overlapping images to be defined (Figur

Figure 1. The matching of points of correspondence between overlapping images. Th
points retained after the calculation of the NCC. The green points are the SIFT points r

However, the SIFT algorithm identifies many false positives but
through calculating the Normalised Correlation Coefficient (NCC) [6
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in this instance by defining 100 by 100 pixel segments around one of the overlapping
images matched SIFT points. These image segments were used with the image it
overlapped in the calculation of the NCC. As the images are of the same scene these
segments should be highly correlated with regions of the overlapping image. Therefore,
only SIFT points which produced a NCC above 0.95 were retained (black points in Figure
1) and allowed for the overlapping images to be stitched together. A translation was found 
between two images when the Euclidean distance between two consecutive SIFT points
was the same [6]. This process was repeated until all of the overlapping images of a tissue
section were stitched together (Figure 2A&B).

2.2 Chemical image acquisition and quality control

The IR images were acquired with a spectral resolution of 6 cm-1 and a spatial resolution of
25µm. Since spectra will be used within classification models it is very important that they
are of an appreciable quality. To ensure this an area was summed between 1500cm-1 and
1600cm-1 wavenumbers, a biologically important area [3], [4], for all of the spectra
contained within an image. Anything which was found to be two standard deviations above
or below the mean of this sum was then excluded from further analysis.

2.3 Image registration

Registration of images in this work is difficult because they are acquired from different
modalities. Therefore, methods which rely on the maximisation of similarity metrics are
not well suited. In this instance, registration was achieved by maximising the overlap of
binary masks. These binary masks were made from analysing each image of a tissue
sample with PCA. The PCA scores were thresholded using a supervised t-test, which is
equivalent to Otsu’s method [7], that had some a priori information about the intensities of
the images background pixels. This information was obtained by manually selecting a
region of background pixels from a principal component that explained the variation
between the background and foreground of an image. To create a binary mask using this
background information a threshold is iteratively increased between the minimum and
maximum of the selected principal component. At each threshold a t-value is produced that
compares pixels below this threshold against the pre-selected background pixels. The
threshold which causes the t-value to exceed the 95% confidence limit is used to produce a
binary mask. This mask is used in the minimisation of Equation 1 so that an optimal linear
transformation, T, can be found. T is composed of a rotation, translation and scaling factor
and was optimised using the simplex search method [8].

      



  (1)

Here E is the total image registration error, I1 represents the histology image, I2
represents the IR chemical map and (N, M) represents the images spatial dimensions. All
of the multimodal images were zero-padded to the same dimension.

However, these linear transformations are not sufficient because of the stretching
which occurs to a tissue sample when it is being prepared. Therefore nonlinear registration
is needed and this was achieved by fitting a cubic B-spline grid to an image [9]. The
nonlinear transformation found was the result of moving the vertices of this grid to
minimise Equation 2:-

        (2)
Where E is the objective function to be minimised, Eimg is a measure of the

dissimilarity between the images I2 and T(I1),    is a regularisation term
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based on the divergence and curl of the B-splines and Econs is a term relating to the
consistency of the registration and prevents stretching. The wi, wd, wr and wc weights allow
an element of control over the deformation of the spline grid [9].

2.4 Image segmentation

The nonlinear transformations applied to the multi modal images enable very accurate
feature correspondences to be achieved. This alignment allows for an image containing
strong features to be used in the probing of other images where these regions of interest are
less apparent. Here epithelial islands are only apparent within the standard histology
images and thus to gather information on the spectroscopic characteristics of these islands
the warped standard histology images were segmented. The segmentation was carried out 
by registering MNF116 antibody stained images and H&E images together. The MNF116
antibody is specific for a tissue sections epithelium (Figure 2 B) but it also stains other
regions of a tissue sample (e.g. blood vessels). However, H&E images strongly stain blood
vessels red and so the registration of the different stained images together enables the use
of the Consensus Principal Component Algorithm (CPCA) algorithm [10] in preserving
only the epithelium within an image. Simple manual thresholding of the CPCA super-
scores allowed a binary mask to be produced and enables epithelial specific spectra to be
collected and used with exploratory statistical methods.

2.5 Discriminant Analysis

In this instance, discrimination was achieved by using NIPALS PCA [11]. It facilitated the
exploration of the spectroscopic variation that existed between the different pathology
groups. All images of a tissue sample were vector normalised, mean centred and in the
case of the IR images baseline corrected. This prevents any anomalies from affecting the 
results of the PCA.

The determination of significant variation by ANalysis Of VAriation (ANOVA) with
95% confidence limits assures that the different pathology groups can be separated.
ANOVA uses the ratio of the intra and inter group variances against a critical value
determined from the F distribution in the selection of discriminatory components. In this
instance the three most discriminatory components were used so that the variation between
the different pathology groups could be visualised.

3 Results
The use of histology specific spectra requires that the final image transformations be as
accurate as possible. The end results are presented in Figure 2 C&D. As these results are 
only preliminary the root mean square error of the image differences, along with manual
inspection, was taken as a measure of accuracy. The fact that these images came from
different modalities means that the binary representation of the tissue foreground within 
these images will be slightly different. The main difference which is found is how the
mucin pools are represented. This difference can be explained by the varying paraffin
content that exists between the different sections produced for a tissue sample. This causes
one image to have more holes within it than the other (indicated by the blue arrows on 
Figure 2 C&D). Even though these defects are apparent we can still determine that the
epithelial islands have been accurately registered. This is because in the interior of the
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difference image the only significant change apparent is around t
epithelial islands (indicated by red arrows on Figure 2 C&D).

From these registered images epithelium specific spectra w
segmentation. In this case the output of the CPCA algorithm (Fig
images presented in Figure 2 A&B was used to generate epithelial s

(A) (B)

(C)                                                          (D)

(E)                                                (F) 
Figure 2. A depiction of how epithelium specific spectra can be collected and
MNF116 and H&E histology images stitched together from images acquired from
(the white arrow indicates an epithelial island which has been enlarged in the
differences between the multimodal images after application of an nonlinear transfo
indicate the observer criteria used for accuracy);(E)Result of the CPCA algorithm
and H&E images; (F)3D PCA score plot made from the epithelial specific spectra
the green points are EM spectra).

This method allowed for 9,804 spectra to be collected from
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Figure 2F and potentially confirms that epithelial specific spectra, the green points in
Figure 2F, can indeed be used to differentiate epithelial misplacement from cancer, the red
points in Figure 2F.

4 Conclusion 
A procedure for the intermodal registration of digital histology images and IR
spectroscopic images is described and successfully applied to 6 samples. An image
segmentation algorithm was then applied to the registered images so that epithelial islands
could be located and their associated spectra collected. PCA was then used to show the
potential of these abstracted spectra in discriminating EM from PC (Figure 2F). This type
of approach could lead to improved cancer diagnostics and reduce the number of EM
patients receiving unnecessary treatments [12].

The enlargement of the sample size is an important aspect of future work along with
automating the classification. The automated discrimination of EM from cancer can be
achieved with Linear Discriminant Analysis (LDA) or Support Vector Machine (SVM)
[13] techniques and will help validate the PCA model presented in Figure 2F. Another 
important future aspect to consider is the method of error analysis used to determine the
accuracy of registration. As the collection of specific spectra rests on the accurate 
registration of images more advanced consistency methods between the modalities of a
tissue sample will be evaluated in the future [14].
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